MICROFLUÍDICA COMO PLATAFORMA DE ESTUDIO EN NEUROBIOLOGÍA

  • Laura Rosas Programa de Ingeniería Biomédica, Universidad Latina de Panamá, Panamá, República de Panamá
  • Bruno A. Cisterna Centro de Investigaciones Médicas, Escuela de Medicina, Universidad de Talca, Chile
  • Diego Reginensi Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panamá, República de Panamá.
Palabras clave: Microfluídica, Biomimética, Enfermedades neurodegenerativas, Regeneración axonal

Resumen

La microfluídica corresponde a la manipulación de fluidos en canales de decenas de micrómetros y que ha emergido como un nuevo campo en la Ingeniería Biomédica. Esta disciplina tiene el potencial de influir en áreas científicas que van desde la síntesis química hasta la neurobiología aplicada. Esta nueva disciplina ha demostrado ser funcional en experimentos de biomimética, estudios patológicos y diversas aplicaciones dentro del área de la biomedicina, lo cual demuestra que a largo plazo la misma podrá ayudar a la comprensión biológica y el desarrollo de nuevas tecnologías que puedan ser implementadas para el diagnóstico, prevención y tratamiento de diversas patologías. En esta revisión, se explica la manera en la cual la microfluídica ha sido imprescindible para la comprensión de la fisiología del sistema nervioso, diversas enfermedades neurodegenerativas y la regeneración axonal.

Descargas

La descarga de datos todavía no está disponible.

Citas

Baumann, N., and D. Pham-Dinh. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological reviews. 81:871-927.

Beebe, D.J., G.A. Mensing, and G.M. Walker. 2002. Physics and applications of microfluidics in biology. Annual review of biomedical engineering. 4:261-286.

Brown, M.S., J. Ye, R.B. Rawson, and J.L. Goldstein. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 100:391-398.

Bucciantini, M., E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taddei, G. Ramponi, C.M. Dobson, and M. Stefani. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 416:507-511.

Calderon-Garciduenas, A.L., and C. Duyckaerts. 2017. Alzheimer disease. Handbook ofclinical neurology. 145:325-337.

Cea, L.A., B.A. Cisterna, C. Puebla, M. Frank, X.F. Figueroa, C. Cardozo, K. Willecke, R. Latorre, and J.C. Saez. 2013. De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proceedings of the National Academy of Sciences of the United States of America. 110:16229-16234.

Chen, J.L., and E. Nedivi. 2010. Neuronal structural remodeling: is it all about access? Current opinion in neurobiology. 20:557-562.

Choi, Y.J., S. Chae, J.H. Kim, K.F. Barald, J.Y. Park, and S.H. Lee. 2013. Neurotoxic amyloid beta oligomeric assemblies recreated in microfluidic platform with interstitial level of slow flow. Scientific reports. 3:1921.

Chokshi, T.V., A. Ben-Yakar, and N. Chronis. 2009. CO2 and compressive immobilization of C. elegans on-chip. Lab on a chip. 9:151-157.

Chung, K., M.M. Crane, and H. Lu. 2008. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nature methods. 5:637-643.

Cisterna, B.A., C. Cardozo, and J.C. Saez. 2014. Neuronal involvement in muscular atrophy. Frontiers in cellular neuroscience. 8:405.

Cisterna, B.A., A.A. Vargas, C. Puebla, and J.C. Saez. 2016. Connexin hemichannels explain the ionic imbalance and lead to atrophy in denervated skeletal muscles. Biochimica et biophysica acta. 1862:2168-2176.

Coquinco, A., L. Kojic, W. Wen, Y.T. Wang, N.L. Jeon, A.J. Milnerwood, and M. Cynader. 2014. A microfluidic based in vitro model of synaptic competition. Molecular and cellular neurosciences. 60:43-52.

Cox, L.J., U. Hengst, N.G. Gurskaya, K.A. Lukyanov, and S.R. Jaffrey. 2008. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nature cell biology. 10:149-159.

David, S., and A.J. Aguayo. 1981. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science (New York, N.Y.). 214:931-933.

Deglincerti, A., Y. Liu, D. Colak, U. Hengst, G. Xu, and S.R. Jaffrey. 2015. Coupled local translation and degradation regulate growth cone collapse. Nature communications. 6:6888.

Elveflow. 2018. Microfluidic Mixers: A Short Review.

Fitch, M.T., and J. Silver. 2008. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental neurology. 209:294-301.

Freundt, E.C., N. Maynard, E.K. Clancy, S. Roy, L. Bousset, Y. Sourigues, M. Covert, R. Melki, K. Kirkegaard, and M. Brahic. 2012. Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Annals of neurology. 72:517-524.

Frimat, J.P., J. Sisnaiske, S. Subbiah, H. Menne, P. Godoy, P. Lampen, M. Leist, J. Franzke, J.G. Hengstler, C. van Thriel, and J. West. 2010. The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab on a chip. 10:701-709.

Goldenberg, M.M. 2012. Multiple sclerosis review. P & T : a peer-reviewed journal for formulary management. 37:175-184.

Gu, L., B. Black, S. Ordonez, A. Mondal, A. Jain, and S. Mohanty. 2014. Microfluidic control of axonal guidance. Scientific reports. 4:6457.

Guo, J.L., and V.M. Lee. 2014. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nature medicine. 20:130-138.

Guo, S.X., F. Bourgeois, T. Chokshi, N.J. Durr, M.A. Hilliard, N. Chronis, and A. Ben-Yakar. 2008a. Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nature methods. 5:531-533.

Guo, S.X., F. Bourgeois, T. Chokshi, N.J. Durr, M.A. Hilliard, N. Chronis, and A. Ben-Yakar. 2008b. Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nature methods. 5:531-533.

Halldorsson, S., E. Lucumi, R. Gomez-Sjoberg, and R.M.T. Fleming. 2015. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors & bioelectronics. 63:218-231.

Hardy, J. 2017. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the "amyloid cascade hypothesis". The FEBS journal. 284:1040-1044.

Hosmane, S., A. Fournier, R. Wright, L. Rajbhandari, R. Siddique, I.H. Yang, K.T. Ramesh, A. Venkatesan, and N. Thakor. 2011. Valve-based microfluidic compression platform: single axon injury and regrowth. Lab on a chip. 11:3888-3895.

Hosmane, S., I.H. Yang, A. Ruffin, N. Thakor, and A. Venkatesan. 2010. Circular compartmentalized microfluidic platform: Study of axon-glia interactions. Lab on a chip. 10:741-747.

Kalia, L.V., and A.E. Lang. 2015. Parkinson's disease. Lancet (London, England). 386:896-912.

Kametani, F., and M. Hasegawa. 2018. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer's Disease. Frontiers in neuroscience. 12:25.

Kerman, B.E., H.J. Kim, K. Padmanabhan, A. Mei, S. Georges, M.S. Joens, J.A. Fitzpatrick, R. Jappelli, K.J. Chandross, P. August, and F.H. Gage. 2015. In vitro myelin formation using embryonic stem cells. Development (Cambridge, England). 142:2213-2225.

Kilinc, D., J.M. Peyrin, V. Soubeyre, S. Magnifico, L. Saias, J.L. Viovy, and B. Brugg. 2011. Wallerian-like degeneration of central neurons after synchronized and geometrically registered mass axotomy in a three-compartmental microfluidic chip. Neurotoxicity research. 19:149-161.

Kim, S., H.J. Kim, and N.L. Jeon. 2010. Biological applications of microfluidic gradient devices. Integrative biology : quantitative biosciences from nano to macro. 2:584-603.

Kim, S., J. Park, A. Han, and J. Li. 2014. Microfluidic systems for axonal growth and regeneration research. Neural regeneration research. 9:1703-1705.

Lambert, M.P., A.K. Barlow, B.A. Chromy, C. Edwards, R. Freed, M. Liosatos, T.E. Morgan, I. Rozovsky, B. Trommer, K.L. Viola, P. Wals, C. Zhang, C.E. Finch, G.A. Krafft, and W.L. Klein. 1998. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America. 95:6448-6453.

Lee, H., R.J. McKeon, and R.V. Bellamkonda. 2010. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America. 107:3340-3345.

Lees, A.J. 2009. The Parkinson chimera. Neurology. 72:S2-11.

Lemus, H.N., A.E. Warrington, and M. Rodriguez. 2018. Multiple Sclerosis: Mechanisms of Disease and Strategies for Myelin and Axonal Repair. Neurologic clinics. 36:1-11.

Li Jeon, N., H. Baskaran, S.K. Dertinger, G.M. Whitesides, L. Van de Water, and M. Toner. 2002. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature biotechnology. 20:826-830.

Li, L., L. Ren, W. Liu, J.C. Wang, Y. Wang, Q. Tu, J. Xu, R. Liu, Y. Zhang, M.S. Yuan, T. Li, and J. Wang. 2012. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics. Analytical chemistry. 84:6444-6453.

Li, Y., M. Yang, Z. Huang, X. Chen, M.T. Maloney, L. Zhu, J. Liu, Y. Yang, S. Du, X. Jiang, and J.Y. Wu. 2014. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage. Neuro-Signals. 22:14-29. Lin, B., and A. Levchenko. 2015. Spatial manipulation with microfluidics. Frontiers in bioengineering and biotechnology. 3:39.

Locascio, L.E., C.E. Perso, and C.S. Lee. 1999. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. Journal of chromatography. A. 857:275-284.

Lu, X., J.S. Kim-Han, K.L. O'Malley, and S.E. Sakiyama-Elbert. 2012. A microdevice platform for visualizing mitochondrial transport in aligned dopaminergic axons. Journal of neuroscience methods. 209:35-39.

Manz, A., C.S. Effenhauser, N. Burggraf, D.J. Harrison, K. Seiler, and K. Fluri. 1994. Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. Journal of Micromechanics and Microengineering. 4:257-265.

Millet, L.J., and M.U. Gillette. 2012a. New perspectives on neuronal development via microfluidic environments. Trends in neurosciences. 35:752-761.

Millet, L.J., and M.U. Gillette. 2012b. Over a century of neuron culture: from the hanging drop to microfluidic devices. The Yale journal of biology and medicine. 85:501-521.

Nave, K.A., and J.L. Salzer. 2006. Axonal regulation of myelination by neuregulin 1. Current opinion in neurobiology. 16:492-500.

Oiwa, K., K. Shimba, T. Numata, A. Takeuchi, K. Kotani, and Y. Jimbo. 2016. A device for co-culturing autonomic neurons and cardiomyocytes using micro-fabrication techniques. Integrative biology : quantitative biosciences from nano to macro. 8:341-348.

Park, H.S., S. Liu, J. McDonald, N. Thakor, and I.H. Yang. 2013. Neuromuscular junction in a microfluidic device. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference. 2013:2833-2835.

Park, J., S. Kim, S.I. Park, Y. Choe, J. Li, and A. Han. 2014. A microchip for quantitative analysis of CNS axon growth under localized biomolecular treatments. Journal of neuroscience methods. 221:166-174.

Park, J., H. Koito, J. Li, and A. Han. 2009. Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomedical microdevices. 11:1145-1153.

Park, J., H. Koito, J. Li, and A. Han. 2012. Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab on a chip. 12:3296-3304.

Probst, A., D. Langui, and J. Ulrich. 1991. Alzheimer's disease: a description of the structural lesions. Brain pathology (Zurich, Switzerland). 1:229-239.

Reginensi, D., P. Carulla, S. Nocentini, O. Seira, X. Serra-Picamal, A. Torres-Espin, A. Matamoros-Angles, R. Gavin, M.T. Moreno-Flores, F. Wandosell, J. Samitier, X.

Trepat, X. Navarro, and J.A. del Rio. 2015. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cellular and molecular life sciences : CMLS. 72:2719-2737.

Reginensi, D., S. Nocentini, S. Garcia, P. Carulla, M.T. Moreno-Flores, F. Wandosell, X. Trepat, A. Bribian, and J.A. del Rio. 2012. Myelin-associated proteins block the migration of olfactory ensheathing cells: an in vitro study using single-cell tracking and traction force microscopy. Cellular and molecular life sciences : CMLS. 69:1689-1703.

Sekhon, B. 2011. An overview of capillary electrophoresis: Pharmaceutical, biopharmaceutical and biotechnology applications. 2-36 pp.

Sharp, K., R. Adrian, J. Molho, and J. Santiago. 2002. Liquid Flows in Microchannels. pp. 6-1-38.

Song, H.L., S. Shim, D.H. Kim, S.H. Won, S. Joo, S. Kim, N.L. Jeon, and S.Y. Yoon. 2014. beta-Amyloid is transmitted via neuronal connections along axonal membranes. Annals of neurology. 75:88-97.

Song, M.S., G.B. Baker, K.G. Todd, and S. Kar. 2011. Inhibition of beta-amyloid1-42 internalization attenuates neuronal death by stabilizing the endosomal-lysosomal system in rat cortical cultured neurons. Neuroscience. 178:181-188.

Southam, K.A., A.E. King, C.A. Blizzard, G.H. McCormack, and T.C. Dickson. 2013. Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. Journal of neuroscience methods. 218:164-169.

Squires, T.M., and S.R. Quake. 2005. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics. 77:977-1026.

Sun, F., K.K. Park, S. Belin, D. Wang, T. Lu, G. Chen, K. Zhang, C. Yeung, G. Feng, B.A. Yankner, and Z. He. 2011. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. 480:372-375.

Takeuchi, A., S. Nakafutami, H. Tani, M. Mori, Y. Takayama, H. Moriguchi, K. Kotani, K. Miwa, J.K. Lee, M. Noshiro, and Y. Jimbo. 2011. Device for co-culture of sympathetic neurons and cardiomyocytes using microfabrication. Lab on a chip. 11:2268-2275.

Taylor, A.M., M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, and N.L. Jeon. 2005. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature methods. 2:599-605.

Taylor, A.M., D.C. Dieterich, H.T. Ito, S.A. Kim, and E.M. Schuman. 2010. Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron. 66:57-68.

Taylor, A.M., and N.L. Jeon. 2011. Microfluidic and compartmentalized platforms for neurobiological research. Critical reviews in biomedical engineering. 39:185-200.

Uzel, S.G., A. Pavesi, and R.D. Kamm. 2014. Microfabrication and microfluidics for muscle tissue models. Progress in biophysics and molecular biology. 115:279-293.

Walker, L.C., M.I. Diamond, K.E. Duff, and B.T. Hyman. 2013. Mechanisms of protein seeding in neurodegenerative diseases. JAMA neurology. 70:304-310.

Wang, Y., W.Y. Lin, K. Liu, R.J. Lin, M. Selke, H.C. Kolb, N. Zhang, X.Z. Zhao, M.E. Phelps, C.K. Shen, K.F. Faull, and H.R. Tseng. 2009. An integrated microfluidic device for large-scale in situ click chemistry screening. Lab on a chip. 9:2281-2285.

Whitesides, G.M. 2006. The origins and the future of microfluidics. Nature. 442:368-373.

Whitesides, G.M., E. Ostuni, S. Takayama, X. Jiang, and D.E. Ingber. 2001. Soft lithography in biology and biochemistry. Annual review of biomedical engineering. 3:335-373.

Wong, I.Y., S.N. Bhatia, and M. Toner. 2013. Nanotechnology: emerging tools for biology and medicine. Genes & development. 27:2397-2408.

Wu, K.Y., U. Hengst, L.J. Cox, E.Z. Macosko, A. Jeromin, E.R. Urquhart, and S.R. Jaffrey. 2005. Local translation of RhoA regulates growth cone collapse. Nature. 436:1020-1024.

Yang, I.H., D. Gary, M. Malone, S. Dria, T. Houdayer, V. Belegu, J.W. McDonald, and N. Thakor. 2012. Axon myelination and electrical stimulation in a microfluidic, compartmentalized cell culture platform. Neuromolecular medicine. 14:112-118.

Yi, Y., J. Park, J. Lim, C.J. Lee, and S.H. Lee. 2015. Central Nervous System and its Disease Models on a Chip. Trends in biotechnology. 33:762-776.

Yiu, G., and Z. He. 2006. Glial inhibition of CNS axon regeneration. Nature reviews. Neuroscience. 7:617-627.

Zahavi, E.E., A. Ionescu, S. Gluska, T. Gradus, K. Ben-Yaakov, and E. Perlson. 2015. A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions. Journal of cell science. 128:1241-1252.

Zhang, J., S. Yan, D. Yuan, G. Alici, N.T. Nguyen, M. Ebrahimi Warkiani, and W. Li. 2016. Fundamentals and applications of inertial microfluidics: a review. Lab on a chip. 16:10-34.

Publicado
2019-07-12
Cómo citar
Laura Rosas, Bruno A. Cisterna, & Diego Reginensi. (2019). MICROFLUÍDICA COMO PLATAFORMA DE ESTUDIO EN NEUROBIOLOGÍA. Gente Clave , 3(2), 89-113. Recuperado a partir de http://revistas.ulatina.edu.pa/index.php/genteclave/article/view/103
Sección
Artículos