DESARROLLO DE HIDROGELES EN APLICACIONES EN BIOMEDICINA
Palabras clave:
Ingeniería biomédica, biomateriales, hidrogelesResumen
Dentro de los biomateriales más ampliamente utilizado en estudios de biomedicina para la regeneración del sistema nervioso se encuentran los hidrogeles y que corresponden a redes polimericas con alta capacidad de absorción de agua. Los hidrogeles son biomateriales capaces de ser incorporados en el cuerpo humano sin generar la perturbación del ecosistema neuronal y promover distintos procesos celulares. Las ventajas del uso de hidrogeles vienen dadas por su gran biocompatibilidad y su gran capacidad regenerativa in situ, lo que los hace excelentes candidatos para aplicaciones en el problemas patológicos humanos. Sus aplicaciones biomédicas son diversas, destacando su papel como sistemas de liberación sostenida de fármacos, lo que representa una alternativa para la regeneración de tejido dañado; además son andamios tridimensionales para diversas terapias celulares, proporcionando un microambiente con propiedades biomiméticas que permite la expresión diferencial de comportamientos celulares que promueven la recuperación del tejido dañado. Esta característica lo hace de alta relevancia en la medicina regenerativa enfocada en la reparación de sistema nervioso en distintas neuropatologías, pues la anatomía de este sistema es altamente compleja y delicada. Actualmente, el estudio de los hidrogeles como posibles biomateriales promotores de la regeneración axonal es un tema muy dinámico y gran potencial en posibles aplicaciones preclinicasDentro de los biomateriales más ampliamente utilizado en estudios de biomedicina para la regeneración del sistema nervioso se encuentran los hidrogeles y que corresponden a redes polimericas con alta capacidad de absorción de agua. Los hidrogeles son biomateriales capaces de ser incorporados en el cuerpo humano sin generar la perturbación del ecosistema neuronal y promover distintos procesos celulares. Las ventajas del uso de hidrogeles vienen dadas por su gran biocompatibilidad y su gran capacidad regenerativa in situ, lo que los hace excelentes candidatos para aplicaciones en el problemas patológicos humanos. Sus aplicaciones biomédicas son diversas, destacando su papel como sistemas de liberación sostenida de fármacos, lo que representa una alternativa para la regeneración de tejido dañado; además son andamios tridimensionales para diversas terapias celulares, proporcionando un microambiente con propiedades biomiméticas que permite la expresión diferencial de comportamientos celulares que promueven la recuperación del tejido dañado. Esta característica lo hace de alta relevancia en la medicina regenerativa enfocada en la reparación de sistema nervioso en distintas neuropatologías, pues la anatomía de este sistema es altamente compleja y delicada. Actualmente, el estudio de los hidrogeles como posibles biomateriales promotores de la regeneración axonal es un tema muy dinámico y gran potencial en posibles aplicaciones preclinicas.
Descargas
Citas
Ahmadian, E., S.M. Dizaj, A. Eftekhari, E. Dalir, P. Vahedi, A. Hasanzadeh, and M. Samiei. 2020. The Potential Applications of Hyaluronic Acid Hydrogels in Biomedicine. Drug Res (Stuttg). 70:6-11.
Ahmed, E.M. 2015. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res. 6:105-121.
Ahmed, T.A., and B.M. Aljaeid. 2016. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 10:483-507.
Ahn, J., J. Ryu, G. Song, M. Whang, and J. Kim. 2019. Network structure and enzymatic degradation of chitosan hydrogels determined by crosslinking methods. Carbohydr Polym. 217:160-167.
Alizadeh-Osgouei, M., Y. Li, and C. Wen. 2019. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater. 4:22-36.
Arifin, D.R., M. Kulkarni, D. Kadayakkara, and J.W.M. Bulte. 2019. Fluorocapsules allow in vivo monitoring of the mechanical stability of encapsulated islet cell transplants. Biomaterials. 221:119410.
Bachmann, M., S. Kukkurainen, V.P. Hytönen, and B. Wehrle-Haller. 2019. Cell Adhesion by Integrins. Physiol Rev. 99:1655-1699.
Bai, X., Z. Bao, S. Bi, Y. Li, X. Yu, S. Hu, M. Tian, X. Zhang, X. Cheng, and X. Chen. 2018. Chitosan-Based Thermo/pH Double Sensitive Hydrogel for Controlled Drug Delivery. Macromol Biosci. 18.
Bashir, S., M. Hina, J. Iqbal, A.H. Rajpar, M.A. Mujtaba, N.A. Alghamdi, S. Wageh, K. Ramesh, and S. Ramesh. 2020. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel). 12.
Beckwith, K.S., S. Ullmann, J. Vinje, and P. Sikorski. 2019. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and Migration Mechanisms. Small. 15:e1902514.
Bekmurzayeva, A., W.J. Duncanson, H.S. Azevedo, and D. Kanayeva. 2018. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. Mater Sci Eng C Mater Biol Appl. 93:1073-1089.
Beveridge, J.M., H.M. Chenot, A. Crich, A. Jacob, and M.G. Finn. 2018. Covalent Functionalization of Flexible Polyvinyl Chloride Tubing. Langmuir. 34:10407-10412.
Boese, A.C., Q.E. Le, D. Pham, M.H. Hamblin, and J.P. Lee. 2018. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther. 9:154.
Boni, R., A. Ali, A. Shavandi, and A.N. Clarkson. 2018. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 25:90.
Bordoni, M., E. Scarian, F. Rey, S. Gagliardi, S. Carelli, O. Pansarasa, and C. Cereda. 2020. Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach. International journal of molecular sciences. 21.
Burdick, J.A., and M.M. Stevens. 2005. 11 - Biomedical hydrogels. In Biomaterials, Artificial Organs and Tissue Engineering. L.L. Hench and J.R. Jones, editors. Woodhead Publishing. 107-115.
Chai, Q., Y. Jiao, and X. Yu. 2017. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels. 3.
Chen, F.M., and X. Liu. 2016. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 53:86-168.
Chen, G., W. Tang, X. Wang, X. Zhao, C. Chen, and Z. Zhu. 2019a. Applications of Hydrogels with Special Physical Properties in Biomedicine. Polymers (Basel). 11.
Chen, M.H., J.J. Chung, J.E. Mealy, S. Zaman, E.C. Li, M.F. Arisi, P. Atluri, and J.A. Burdick. 2019b. Injectable Supramolecular Hydrogel/Microgel Composites for Therapeutic Delivery. Macromol Biosci. 19:e1800248.
Chen, Z., Z. Lv, Y. Sun, Z. Chi, and G. Qing. 2020. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. Journal of Materials Chemistry B. 8:2951-2973.
Chyzy, A., and M.E. Plonska-Brzezinska. 2020. Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules. 25.
Datta, L.P., S. Manchineella, and T. Govindaraju. 2020. Biomolecules-derived biomaterials. Biomaterials. 230:119633.
Du, X., S. Yin, Y. Wang, X. Gu, G. Wang, and J. Li. 2018. Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr Polym. 202:513-522.
Echave, M.C., L. Saenz del Burgo, J.L. Pedraz, and G. Orive. 2017. Gelatin as Biomaterial for Tissue Engineering. Curr Pharm Des. 23:3567-3584.
Edgar, L., T. Pu, B. Porter, J.M. Aziz, C. La Pointe, A. Asthana, and G. Orlando. 2020. Regenerative medicine, organ bioengineering and transplantation. Br J Surg. 107:793-800.
Egbo, M.K. 2020. A fundamental review on composite materials and some of their applications in biomedical engineering. Journal of King Saud University - Engineering Sciences.
El-Sherbiny, I.M., and M.H. Yacoub. 2013. Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science & Practice. 2013:316-342.
Elahi, N., M. Kamali, and M.H. Baghersad. 2018. Recent biomedical applications of gold nanoparticles: A review. Talanta. 184:537-556.
Fennell, E., and J.M. Huyghe. 2019. Chemically Responsive Hydrogel Deformation Mechanics: A Review. Molecules. 24.
Fontoura, J.C., C. Viezzer, F.G. Dos Santos, R.A. Ligabue, R. Weinlich, R.D. Puga, D. Antonow, P. Severino, and C. Bonorino. 2020. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C Mater Biol Appl. 107:110264.
Frazão, L.P., J. Vieira de Castro, and N.M. Neves. 2020. In Vivo Evaluation of the Biocompatibility of Biomaterial Device. Adv Exp Med Biol. 1250:109-124.
Gamble, A., A.R. Pepper, A. Bruni, and A.M.J. Shapiro. 2018. The journey of islet cell transplantation and future development. Islets. 10:80-94.
García-Gareta, E., Y. Abduldaiem, P. Sawadkar, C. Kyriakidis, F. Lali, and K.V. Greco. 2020. Decellularised scaffolds: just a framework? Current knowledge and future directions. J Tissue Eng. 11:2041731420942903.
Gazia, C., R. Tamburrini, A. Asthana, D. Chaimov, S.M. Muir, D.I. Marino, L. Delbono, V. Villani, L. Perin, P. Di Nardo, J. Robertson, and G. Orlando. 2019. Extracellular matrix-based hydrogels obtained from human tissues: a work still in progress. Curr Opin Organ Transplant. 24:604-612.
Ghuman, H., C. Mauney, J. Donnelly, A.R. Massensini, S.F. Badylak, and M. Modo. 2018. Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta Biomater. 80:66-84.
Girotti, A., S. Escalera-Anzola, I. Alonso-Sampedro, J. González-Valdivieso, and F.J. Arias. 2020. Aptamer-Functionalized Natural Protein-Based Polymers as Innovative Biomaterials. Pharmaceutics. 12.
Gonçalves, S., F. Dourado, and L.R. Rodrigues. 2015. Overview on Cell-Biomaterial Interactions. In Advanced Polymers in Medicine. F. Puoci, editor. Springer International Publishing, Cham. 91-128.
Gonzalez Gonzalez, M., I. Cichon, A. Scislowska-Czarnecka, and E. Kolaczkowska. 2018. Challenges in 3D culturing of neutrophils: Assessment of cell viability. J Immunol Methods. 457:73-77.
Gradinaru, V., J. Treweek, K. Overton, and K. Deisseroth. 2018. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys. 47:355-376.
Grealish, S., J. Drouin-Ouellet, and M. Parmar. 2016. Brain repair and reprogramming: the route to clinical translation. J Intern Med. 280:265-275.
Guillem-Marti, J., N. Cinca, M. Punset, I.G. Cano, F.J. Gil, J.M. Guilemany, and S. Dosta. 2019. Porous titanium-hydroxyapatite composite coating obtained on titanium by cold gas spray with high bond strength for biomedical applications. Colloids Surf B Biointerfaces. 180:245-253.
Gupta, N., Y.N. Liang, J.S.K. Lim, and X. Hu. 2020. Design Rationale for Stimuli-Responsive, Semi-interpenetrating Polymer Network Hydrogels-A Quantitative Approach. Macromol Rapid Commun. 41:e2000199.
Guruswamy Damodaran, R., and P. Vermette. 2018. Tissue and organ decellularization in regenerative medicine. Biotechnol Prog. 34:1494-1505.
Hao, P., H. Duan, F. Hao, L. Chen, M. Sun, K.S. Fan, Y.E. Sun, D. Williams, Z. Yang, and X. Li. 2017. Neural repair by NT3-chitosan via enhancement of endogenous neurogenesis after adult focal aspiration brain injury. Biomaterials. 140:88-102.
Hernandez, M.J., R. Gaetani, V.M. Pieters, N.W. Ng, A.E. Chang, T.R. Martin, E. van Ingen, E.A. Mol, J.P.G. Sluijter, and K.L. Christman. 2018. Decellularized
Extracellular Matrix Hydrogels as a Delivery Platform for MicroRNA and Extracellular Vesicle Therapeutics. Adv Ther (Weinh). 1.
Hollingshead, S., and J.C. Liu. 2020. pH-Sensitive Mechanical Properties of Elastin-Based Hydrogels. Macromol Biosci. 20:e1900369.
Hoshiba, T., H. Lu, N. Kawazoe, and G. Chen. 2010. Decellularized matrices for tissue engineering. Expert opinion on biological therapy. 10:1717-1728.
Hou, Y., W. Xie, L. Yu, L.C. Camacho, C. Nie, M. Zhang, R. Haag, and Q. Wei. 2020. Surface Roughness Gradients Reveal Topography-Specific Mechanosensitive
Responses in Human Mesenchymal Stem Cells. Small. 16:e1905422.
Jayaramudu, T., H.U. Ko, H.C. Kim, J.W. Kim, and J. Kim. 2019. Swelling Behavior of Polyacrylamide-Cellulose Nanocrystal Hydrogels: Swelling Kinetics, Temperature, and pH Effects. Materials (Basel). 12.
Jensen, C., and Y. Teng. 2020. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front Mol Biosci. 7:33.
Jo, H., M. Yoon, M. Gajendiran, and K. Kim. 2020. Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications. Macromol Biosci. 20:e1900300.
Jones, M.C., J. Zha, and M.J. Humphries. 2019. Connections between the cell cycle, cell adhesion and the cytoskeleton. Philos Trans R Soc Lond B Biol Sci. 374:20180227.
Kang, Y. 2020. Cell Biological Techniques and Cell-Biomaterial Interactions. Cells. 9.
Karimi, F., A.J. O'Connor, G.G. Qiao, and D.E. Heath. 2018. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration. Adv Healthc Mater. 7:e1701324.
Kaur, M., and K. Singh. 2019. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 102:844-862.
Khaing, Z.Z., R.C. Thomas, S.A. Geissler, and C.E. Schmidt. 2014. Advanced biomaterials for repairing the nervous system: what can hydrogels do for the brain? Materials Today. 17:332-340.
Kim, B.S., S. Das, J. Jang, and D.W. Cho. 2020. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev. 120:10608-10661.
Kim, B.S., Y.W. Kwon, J.S. Kong, G.T. Park, G. Gao, W. Han, M.B. Kim, H. Lee, J.H. Kim, and D.W. Cho. 2018. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials. 168:38-53.
Kiradzhiyska, D.D., and R.D. Mantcheva. 2019. Overview of Biocompatible Materials and Their Use in Medicine. Folia Med (Plovdiv). 61:34-40.
Kirschning, A., N. Dibbert, and G. Dräger. 2018. Chemical Functionalization of Polysaccharides-Towards Biocompatible Hydrogels for Biomedical Applications. Chemistry. 24:1231-1240.
Kopecek, J. 2007. Hydrogel biomaterials: a smart future? Biomaterials. 28:5185-5192.
Kornev, V.A., E.A. Grebenik, A.B. Solovieva, R.I. Dmitriev, and P.S. Timashev. 2018. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J. 16:488-502.
Lam, D., H. Enright, J. Cadena, S. Peters, A. Sales, J. Osburn, D. Soscia, K. Kulp, E. Wheeler, and F. Nicholas. 2019. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array.
Lee, S.H., and B.H. Jun. 2019. Silver Nanoparticles: Synthesis and Application for Nanomedicine. International journal of molecular sciences. 20.
Li, E.W., O.C. McKee-Muir, and P.M. Gilbert. 2018a. Cellular Biomechanics in Skeletal Muscle Regeneration. Curr Top Dev Biol. 126:125-176.
Li, X., R. Li, Z. Liu, X. Gao, S. Long, and G. Zhang. 2018b. Integrated Functional High-Strength Hydrogels with Metal-Coordination Complexes and H-Bonding Dual Physically Cross-linked Networks. Macromol Rapid Commun. 39:e1800400.
Li, X., and X. Su. 2018. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B. 6:4714-4730.
Lin, C.C., and K.S. Anseth. 2009. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 26:631-643.
Liu, G., Z. Ding, Q. Yuan, H. Xie, and Z. Gu. 2018. Multi-Layered Hydrogels for Biomedical Applications. Front Chem. 6:439.
López-Gallego, F., and A.I. Benítez-Mateos. 2020. Manufacturing of Protein-Based Biomaterials Coupling Cell-Free Protein Synthesis with Protein Immobilization. Methods Mol Biol. 2100:335-343.
Lu, L., S. Yuan, J. Wang, Y. Shen, S. Deng, L. Xie, and Q. Yang. 2018. The Formation Mechanism of Hydrogels. Curr Stem Cell Res Ther. 13:490-496.
Ma, X., A. Agas, Z. Siddiqui, K. Kim, P. Iglesias-Montoro, J. Kalluru, V. Kumar, and J. Haorah. 2020. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater. 5:124-132.
Mahumane, G.D., P. Kumar, L.C. du Toit, Y.E. Choonara, and V. Pillay. 2018. 3D scaffolds for brain tissue regeneration: architectural challenges. Biomater Sci. 6:2812-2837.
Maisani, M., D. Pezzoli, O. Chassande, and D. Mantovani. 2017. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng. 8:2041731417712073.
Martin, N., and G. Youssef. 2018. Dynamic properties of hydrogels and fiber-reinforced hydrogels. J Mech Behav Biomed Mater. 85:194-200.
Medberry, C.J., P.M. Crapo, B.F. Siu, C.A. Carruthers, M.T. Wolf, S.P. Nagarkar, V. Agrawal, K.E. Jones, J. Kelly, S.A. Johnson, S.S. Velankar, S.C. Watkins, M. Modo, and S.F. Badylak. 2013. Hydrogels derived from central nervous system extracellular matrix. Biomaterials. 34:1033-1040.
Mertgen, A.S., V.T. Trossmann, A.G. Guex, K. Maniura-Weber, T. Scheibel, and M. Rottmar. 2020. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS Appl Mater Interfaces. 12:21342-21367.
Micheels, P., and M.O. Eng. 2018. Rheological Properties of Several Hyaluronic Acid-Based Gels: A Comparative Study. J Drugs Dermatol. 17:948-954.
Moradali, M.F., and B.H.A. Rehm. 2020. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 18:195-210.
Müllner, M. 2019. Functional Natural and Synthetic Polymers. Macromol Rapid Commun. 40:e1900151.
Narayanaswamy, R., and V.P. Torchilin. 2019. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules. 24.
Navarro, M., S. del Valle, S. Martinez, S. Zeppetelli, L. Ambrosio, J.A. Planell, and M.P. Ginebra. 2004. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials. 25:4233-4241.
Navarro, M., and J.A. Planell. 2012. Is nanotechnology the key to unravel and engineer biological processes? Methods in molecular biology (Clifton, N.J.). 811:1-16.
Newsom, J.P., K.A. Payne, and M.D. Krebs. 2019. Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomater. 88:32-41.
Nezhad-Mokhtari, P., M. Ghorbani, L. Roshangar, and J. Soleimani Rad. 2019. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods. Int J Biol Macromol. 139:760-772.
Nguyen, K.T., and J.L. West. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 23:4307-4314.
Nicodemus, G.D., and S.J. Bryant. 2008. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev. 14:149-165.
Niemczyk, B., P. Sajkiewicz, and D. Kolbuk. 2018. Injectable hydrogels as novel materials for central nervous system regeneration. J Neural Eng. 15:051002.
Nih, L.R., S.T. Carmichael, and T. Segura. 2016. Hydrogels for brain repair after stroke: an emerging treatment option. Curr Opin Biotechnol. 40:155-163.
Niinomi, M., M. Nakai, and J. Hieda. 2012. Development of new metallic alloys for biomedical applications. Acta Biomater. 8:3888-3903.
Noori, A., S.J. Ashrafi, R. Vaez-Ghaemi, A. Hatamian-Zaremi, and T.J. Webster. 2017. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine. 12:4937-4961.
Orive, G., E. Anitua, J. Pedraz, and D. Emerich. 2009. Biomaterials for Promoting Brain Protection, Repair and Regeneration. Nature reviews. Neuroscience. 10:682-692.
Palmese, L.L., R.K. Thapa, M.O. Sullivan, and K.L. Kiick. 2019. Hybrid hydrogels for biomedical applications. Curr Opin Chem Eng. 24:143-157.
Pieralli, S., R.J. Kohal, R.E. Jung, K. Vach, and B.C. Spies. 2017. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. J Dent Res. 96:38-46.
Pina, S., V.P. Ribeiro, C.F. Marques, F.R. Maia, T.H. Silva, R.L. Reis, and J.M. Oliveira. 2019. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials (Basel). 12.
Potjewyd, G., S. Moxon, T. Wang, M. Domingos, and N.M. Hooper. 2018. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends Biotechnol. 36:457-472.
Rahmati, M., and M. Mozafari. 2019. Biocompatibility of alumina-based biomaterials-A review. J Cell Physiol. 234:3321-3335.
Rastogi, P., and B. Kandasubramanian. 2019. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 11:042001.
Reginensi, D., D. Ortiz, A. Pravia, A. Burillo, F. Morales, C. Morgan, L. Jimenez, K.R. Dave, M.A. Perez-Pinzon, and R.A. Gittens. 2020. Role of Region-Specific Brain Decellularized Extracellular Matrix on In Vitro Neuronal Maturation. Tissue Eng Part A. 26:964-978.
Rowley, A.T., R.R. Nagalla, S.W. Wang, and W.F. Liu. 2019. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Adv Healthc Mater. 8:e1801578.
Sa, Y., F. Yang, Y. Wang, J.G.C. Wolke, and J.A. Jansen. 2018. Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery. Adv Exp Med Biol. 1078:119-134.
Saldin, L.T., M.C. Cramer, S.S. Velankar, L.J. White, and S.F. Badylak. 2017. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 49:1-15.
Sameer, J., V. Komal, and S. Shree R. 2018. Advanced Hydrogels for Biomedical Applications. Biomedical Journal of Scientific & Technical Research. 5.
Saric, M., and T. Scheibel. 2019. Engineering of silk proteins for materials applications. Curr Opin Biotechnol. 60:213-220.
Sarin, S., and A. Rekhi. 2016. Bioactive glass: A potential next generation biomaterial. SRM Journal of Research in Dental Sciences. 7:27-32.
Sawkins, M.J., L.T. Saldin, S.F. Badylak, and L.J. White. 2018. ECM Hydrogels for Regenerative Medicine. In Extracellular Matrix for Tissue Engineering and Biomaterials. A.C. Berardi, editor. Springer International Publishing, Cham. 27-58.
Seidi, F., W. Zhao, H. Xiao, Y. Jin, and C. Zhao. 2020. Layer-by-Layer Assembly for Surface Tethering of Thin-Hydrogel Films: Design Strategies and Applications. Chem Rec. 20:857-881.
Semitela, Â., A.F. Girão, C. Fernandes, G. Ramalho, I. Bdikin, A. Completo, and P.A. Marques. 2020. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. J Biomater Appl. 35:471-484.
Serrano-Aroca, A., J.F. Ruiz-Pividal, and M. Llorens-Gamez. 2017. Enhancement of water diffusion and compression performance of crosslinked alginate films with a minuscule amount of graphene oxide. Sci Rep. 7:11684.
Sharma, S., and S. Tiwari. 2020. A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol. 162:737-747.
Shehzad, A., V. Ravinayagam, H. AlRumaih, M. Aljafary, D. Almohazey, S. Almofty, N.A. Al-Rashid, and E.A. Al-Suhaimi. 2019. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance. Curr Pharm Des. 25:3599-3607.
Sheikhpour, M., L. Barani, and A. Kasaeian. 2017. Biomimetics in drug delivery systems: A critical review. Journal of controlled release : official journal of the Controlled Release Society. 253:97-109.
Shekhter, A.B., A.L. Fayzullin, M.N. Vukolova, T.G. Rudenko, V.D. Osipycheva, and P.F. Litvitsky. 2019. Medical Applications of Collagen and Collagen-Based Materials. Curr Med Chem. 26:506-516.
Singelyn, J.M., J.A. DeQuach, S.B. Seif-Naraghi, R.B. Littlefield, P.J. Schup-Magoffin, and K.L. Christman. 2009. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 30:5409-5416.
Slaughter, B.V., S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, and N.A. Peppas. 2009. Hydrogels in regenerative medicine. Adv Mater. 21:3307-3329.
Starz-Gaiano, M. 2020. Mechanisms and modeling of cell migration. Semin Cell Dev Biol. 100:130-132.
Sun, B., M. Zhang, J. Shen, Z. He, P. Fatehi, and Y. Ni. 2019a. Applications of Cellulose-based Materials in Sustained Drug Delivery Systems. Curr Med Chem. 26:2485-2501.
Sun, R., M. Åhlén, C.W. Tai, G. Bajnóczi É, F. Kleijne, N. Ferraz, I. Persson, M. Strømme, and O. Cheung. 2019b. Highly Porous Amorphous Calcium Phosphate for Drug Delivery and Bio-Medical Applications. Nanomaterials (Basel). 10.
Tian, B., S. Hua, Y. Tian, and J. Liu. 2020. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B. 8:10050-10064.
Tibbitt, M.W., and K.S. Anseth. 2009. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 103:655-663.
Tiemann, T.T., A.M. Padma, E. Sehic, H. Bäckdahl, M. Oltean, M.J. Song, M. Brännström, and M. Hellström. 2020. Towards uterus tissue engineering: a comparative study of sheep uterus decellularisation. Mol Hum Reprod. 26:167-178.
Vedadghavami, A., F. Minooei, M.H. Mohammadi, S. Khetani, A. Rezaei Kolahchi, S. Mashayekhan, and A. Sanati-Nezhad. 2017. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 62:42-63.
Vijayavenkataraman, S., N. Vialli, J.Y.H. Fuh, and W.F. Lu. 2019. Conductive collagen/polypyrrole-b-polycaprolactone hydrogel for bioprinting of neural tissue constructs. Int J Bioprint. 5:229.
Wang, Y., C.K. Adokoh, and R. Narain. 2018. Recent development and biomedical applications of self-healing hydrogels. Expert Opin Drug Deliv. 15:77-91.
Wang, Y., L. Guo, S. Dong, J. Cui, and J. Hao. 2019. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci. 266:1-20.
Wei, W., H. Li, C. Yin, and F. Tang. 2020. Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv. 27:460-468.
Williams, D.F. 2019. Challenges With the Development of Biomaterials for Sustainable Tissue Engineering. Front Bioeng Biotechnol. 7:127.
Winnacker, M. 2017. Polyamides and their functionalization: recent concepts for their applications as biomaterials. Biomaterials Science. 5:1230-1235.
Yang, J., M. Shen, H. Wen, Y. Luo, R. Huang, L. Rong, and J. Xie. 2020. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr Polym. 230:115650.
Yao, M., F. Gao, R. Xu, J. Zhang, Y. Chen, and F. Guan. 2019a. A dual-enzymatically cross-linked injectable gelatin hydrogel loaded with BMSC improves neurological function recovery of traumatic brain injury in rats. Biomater Sci. 7:4088-4098.
Yao, Q., Y.W. Zheng, Q.H. Lan, L. Kou, H.L. Xu, and Y.Z. Zhao. 2019b. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater Sci Eng C Mater Biol Appl. 104:109942.
Ye, D., C. Chang, and L. Zhang. 2019. High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. Biomacromolecules. 20:1989-1995.
Yosef, A., O. Kossover, I. Mironi-Harpaz, A. Mauretti, S. Melino, J. Mizrahi, and D. Seliktar. 2019. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures. Adv Healthc Mater. 8:e1801436.
Yu, L., Z.J. Sun, Q.C. Tan, S. Wang, W.H. Wang, X.Q. Yang, and X.J. Ye. 2020. Thermosensitive injectable decellularized nucleus pulposus hydrogel as an ideal biomaterial for nucleus pulposus regeneration. J Biomater Appl. 35:182-192.
Zhang, K., and A. Manninen. 2019. 3D Cell Culture Models of Epithelial Tissues. Methods Mol Biol. 1926:77-84.
Zhao, H., K. Xu, P. Zhu, C. Wang, and Q. Chi. 2019a. Smart hydrogels with high tunability of stiffness as a biomimetic cell carrier. Cell Biol Int. 43:84-97.
Zhao, Z., W. Yao, N. Wang, C. Liu, H. Zhou, H. Chen, and W. Qiao. 2019b. Synthesis and evaluation of mono- and multi-hydroxyl low toxicity pH-sensitive cationic lipids for drug delivery. Eur J Pharm Sci. 133:69-78.
Zhou, L., J. Tu, G. Fang, L. Deng, X. Gao, K. Guo, J. Kong, J. Lv, W. Guan, and C. Yang. 2018. Combining PLGA Scaffold and MSCs for Brain Tissue Engineering: A Potential Tool for Treatment of Brain Injury. Stem Cells Int. 2018:5024175.
Zhu, Y., Q. Zhang, X. Shi, and D. Han. 2019. Hierarchical Hydrogel Composite Interfaces with Robust Mechanical Properties for Biomedical Applications. Adv Mater. 31:e1804950.
Žigon-Branc, S., M. Markovic, J. Van Hoorick, S. Van Vlierberghe, P. Dubruel, E. Zerobin, S. Baudis, and A. Ovsianikov. 2019. Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Eng Part A. 25:1369-1380.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El contenido de las publicaciones son responsabilidad absoluta de los autores y no de la Universidad ni de la revista Gente Clave, que es editada por la Universidad Latina de Panamá. La revista permite a los autores mantener el derecho de autor sobre los articulos y documentos publicados mediante el uso de la siguiente licencia.
Los artículos se publican con una licencia https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Bajo los siguientes términos:
-
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
-
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
-
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.