TECNOLOGÍAS REMOTAS NO INVASIVAS UTILIZADAS DURANTE LA PANDEMIA COVID-19 COMO APOYO EN EL PROCESO DE REGISTRO DE SEÑALES CARDIORRESPIRATORIAS

  • LUIS ESTRADA PETROCELLI Universidad Latina de Panamá, Carrera de Ingeniería Biomédica e Instrumentación. Ciudad de Panamá, Panamá.
  • JOSÉ SÁNCHEZ Universidad Latina de Panamá, Carrera de Ingeniería Biomédica e Instrumentación. Ciudad de Panamá, Panamá.
  • RAMIRO GÓMEZ Universidad Latina de Panamá, Carrera de Ingeniería Biomédica e Instrumentación. Ciudad de Panamá, Panamá.
Palabras clave: COVID-19, tecnologías, señales cardiorrespiratorias, no invasivo, registro, remoto

Resumen

El principal objetivo de esta investigación documental, es dar a conocer las tecnologías remotas no invasivas, utilizadas durante la pandemia de la COVID-19, como apoyo en el registro de señales cardiorrespiratorias. Esta enfermedad ha causados efectos negativos en los sistemas de salud, haciendo que se tenga que reestructurar la forma de atención a los pacientes. En el difícil momento, la rápida propagación llevó a cambiar el estilo de vida, quedando en aislamiento por seguridad propia y la de seres queridos. El sistema cardiorrespiratorio fue el más afectado por la enfermedad COVID-19, causando dificultades respiratorias, cardiacas, fatiga, disnea entre otras. Donde parámetros como la Frecuencia cardiaca (FC) y Frecuencia respiratoria (FR) fueron fundamentales, para determinar la condición de un paciente COVID-19. Para esto se optó un método investigativo documental, retrospectivo donde se obtuvo información de publicaciones científicas, datos bibliográficos y buscadores relacionados al área de salud e ingeniería. En la actualidad se han desarrollado muchas soluciones de tecnologías remotas, sin embargo, su participación activa fue en la pandemia.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] X. Y. Zhang et al., “Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2,” Infectious Diseases of Poverty, vol. 9, no. 1. BioMed Central, Jul. 20, 2020. doi: 10.1186/s40249-020-00691-6.

[2] A. Trilla, “One world, one health: The novel coronavirus COVID-19 epidemic,” Med Clin (Barc), vol. 154, no. 5, pp. 175–177, Mar. 2020, doi: 10.1016/j.medcli.2020.02.002.

[3] Vaigai College of Engineering and Institute of Electrical and Electronics Engineers, Proceedings of the International Conference on Intelligent Computing and Control Systems (ICICCS 2020) : 13-15 May, 2020.

[4] C. Massaroni, A. Nicolò, E. Schena, and M. Sacchetti, “Remote Respiratory Monitoring in the Time of COVID-19,” Front Physiol, vol. 11, May 2020, doi: 10.3389/fphys.2020.00635.

[5] S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health monitoring,” Sensors (Switzerland), vol. 17, no. 1. MDPI AG, Jan. 12, 2017. doi: 10.3390/s17010130.

[6] F. Zhao, M. Li, and J. Z. Tsien, “Technology platforms for remote monitoring of vital signs in the new era of telemedicine,” Expert Review of Medical Devices, vol. 12, no. 4. Expert Reviews Ltd., pp. 411–429, Jul. 01, 2015. doi: 10.1586/17434440.2015.1050957.
[7] A. H. Mohd Aman, W. H. Hassan, S. Sameen, Z. S. Attarbashi, M. Alizadeh, and L. A. Latiff, “IoMT amid COVID-19 pandemic: Application, architecture, technology, and security,” Journal of Network and Computer Applications, vol. 174. Academic Press, Jan. 15, 2021. doi: 10.1016/j.jnca.2020.102886.

[8] K. Bouabida et al., “Healthcare Professional Perspectives on the Use of Remote Patient-Monitoring Platforms during the COVID-19 Pandemic: A Cross-Sectional Study,” J Pers Med, vol. 12, no. 4, Apr. 2022, doi: 10.3390/jpm12040529.

[9] F. Michard, “Smartphones and e-tablets in perioperative medicine,” Korean Journal of Anesthesiology, vol. 70, no. 5. Korean Society of Anesthesiologists, pp. 493–499, Oct. 01, 2017. doi: 10.4097/kjae.2017.70.5.493.

[10] V. Manuel et al., “Monitoreo Remoto de Pacientes con Diabetes Utilizando Tecnologías Móviles Inalámbricas Remote Monitoring Using Diabetes Patients Wireless Mobile Technologies,” 2012.

[11] M. Niurka and V. Vidal, “Las Tecnologías de la Información y las Comunicaciones: un desafío para la Gestión del Cuidado Information and communication technologies: a challenge for care management,” 2016. [Online]. Available: http://scielo.sld.cu

[12] H. K. Cárcamo and J. P. Bahamondes, “Ubiquitous health monitoring in real-time with WBSN,” 2014.

[13] D. D. Sanchez-Gallegos et al., “On the Continuous Processing of Health Data in Edge-Fog-Cloud Computing by Using Micro/Nanoservice Composition,” IEEE Access, vol. 8, pp. 120255–120281, 2020, doi: 10.1109/ACCESS.2020.3006037.

[14] S. Sakphrom, T. Limpiti, K. Funsian, S. Chandhaket, R. Haiges, and K. Thinsurat, “Intelligent medical system with low-cost wearable monitoring devices to measure basic vital signals of admitted patients,” Micromachines (Basel), vol. 12, no. 8, Aug. 2021, doi: 10.3390/mi12080918.

[15] Á. Troncoso, J. A. Ortega, R. Seepold, and N. M. Madrid, “Non-invasive devices for respiratory sound monitoring,” in Procedia Computer Science, 2021, vol. 192, pp. 3040–3048. doi: 10.1016/j.procs.2021.09.076.

[16] “Sistema respiratorio 2”.
[17] “ESTRUCTURA Y FUNCIONES DEL SISTEMA RESPIRATORIO STRUCTURE AND FUNCTION OF THE RESPIRATORY SYSTEM.”

[18] “TEMA 1. FISIOLOGIA CARDIOVASCULAR 1.1 Función general del sistema cardiocirculatorio 1.2 Mecánica de la contracción cardiaca y fases del ciclocardiaco 1.3 El corazón acoplado a la circulación arterial y venosa. 1.1-Función general del sistema cardiocirculatorio.”

[19] “TRABAJO FIN DE GRADO FISIOTERAPIA.”

[20] D. Buonanno Profesor Asesor and A. Leonardo González Mancera Ing, “Desarrollo de un sistema de medición de frecuencia respiratoria de bajo costo Proyecto individual Autor.”

[21] A. Bella, R. Latif, A. Saddik, and L. Jamad, “Review and evaluation of heart rate monitoring based vital signs, a case Study: Covid-19 Pandemic,” in Colloquium in Information Science and Technology, CIST, Jun. 2020, vol. 2020-June, pp. 79–83. doi: 10.1109/CiSt49399.2021.9357302.

[22] V. Millette and N. Baddour, “INVESTIGAR Acceso abierto Procesamiento de señales de señales cardíacas para la cuantificación de eventos no deterministas,” 2011. [Online]. Available: http://www.biomedical-engineering-online.com/content/10/1/10www.onlinedoctranslator.com

[23] M. Ali, A. Elsayed, A. Mendez, Y. Savaria, and M. Sawan, “Contact and Remote Breathing Rate Monitoring Techniques: A Review,” IEEE Sensors Journal, vol. 21, no. 13. Institute of Electrical and Electronics Engineers Inc., pp. 14569–14586, Jul. 01, 2021. doi: 10.1109/JSEN.2021.3072607.

[24] M. A. F. Pimentel, P. H. Charlton, and D. A. Clifton, “Probabilistic estimation of respiratory rate from wearable sensors,” in Smart Sensors, Measurement and Instrumentation, vol. 15, Springer International Publishing, 2015, pp. 241–262. doi: 10.1007/978-3-319-18191-2_10.

[25] “HOME [Company address],” 2020.
[26] “Instructions for Use (IFU) for KardiaMobile 6L (AC-019) Instructions for Use for KardiaMobile 6L System.” [Online]. Available: www.alivecor.com/compatibility.

[27] “Índice Introducción.”

[28] “rmc20629i”.

[29] A. Ukil and S. Bandyopadhyay, “Automated cardiac health screening using smartphone and wearable sensors through anomaly analytics,” in EAI/Springer Innovations in Communication and Computing, Springer Science and Business Media Deutschland GmbH, 2019, pp. 145–172. doi: 10.1007/978-3-319-93491-4_8.

[30] J. Felipe and R. Villegas, “ANÁLISIS DE LA VARIABILIDAD DE LA FRECUENCIA CARDÍACA INTEGRANDO LA SEÑAL DE LA FRECUENCIA RESPIRATORIA,” 2009.

[31] “rehabilitacion_manual”.

[32] I. Rodríguez-Núñez, N. Rodríguez-Romero, A. Álvarez, L. Zambrano, G. L. da Veiga, and F. Romero, “Heart rate variability in children: methodological issues and clinical applications,” Arch Cardiol Mex, vol. 92, no. 2, pp. 242–252, Apr. 2022, doi: 10.24875/ACM.20000473.

[33] A. M. Russell et al., “Daily home spirometry: An effective tool for detecting progression in idiopathic pulmonary fibrosis,” Am J Respir Crit Care Med, vol. 194, no. 8, pp. 989–997, Oct. 2016, doi: 10.1164/rccm.201511-2152OC.

[34] “SmartMat Quick Start Manual SmartMat (SM-W32/SM-W42) Quick Start Manual.”

[35] T. Zhu, P. Watkinson, and D. A. Clifton, “Smartwatch data help detect COVID-19,” Nature Biomedical Engineering, vol. 4, no. 12. Nature Research, pp. 1125–1127, Dec. 01, 2020. doi: 10.1038/s41551-020-00659-9.

[36] A. E. Tondas, R. A. Halim, and M. Guyanto, “Minimal or No Touch Electrocardiography Recording and Remote Heart Rhythm Monitoring during COVID-19 Pandemic Era,” Indonesian Journal of Cardiology, Jun. 2020, doi: 10.30701/ijc.1010.

[37] J. Liu, F. Miao, L. Yin, Z. Pang, and Y. Li, “A Noncontact Ballistocardiography-Based IoMT System for Cardiopulmonary Health Monitoring of Discharged COVID-19 Patients,” IEEE Internet Things J, vol. 8, no. 21, pp. 15807–15817, Nov. 2021, doi: 10.1109/JIOT.2021.3063549.

[38] I. Starr, “The Relation of the Ballistocardiogram to Cardiac Function*.”

[39] S. M. M. Islam, C. Grado, V. Lubecke, and L. C. Lubecke, “UAV Radar Sensing of Respiratory Variations for COVID-Type Disorders,” in Asia-Pacific Microwave Conference Proceedings, APMC, Dec. 2020, vol. 2020-December, pp. 737–739. doi: 10.1109/APMC47863.2020.9331613.

[40] A. M. Luks and E. R. Swenson, “Pulse oximetry for monitoring patients with COVID-19 at home potential pitfalls and practical guidance,” Annals of the American Thoracic Society, vol. 17, no. 9. American Thoracic Society, pp. 1040–1046, Sep. 01, 2020. doi: 10.1513/AnnalsATS.202005-418FR.

[41] A. Mbbch et al., “Effectiveness and safety of pulse oximetry in remote patient monitoring of patients with COVID-19: a systematic review,” 2022. [Online]. Available: www.thelancet.com/

[42] P. Shinde, R. Kulkarni, and G. Kulkarni, “Validation of portable Bluetooth enabled smart spirometer (Alveoair™) for the measurement of various lung functions in healthy subjects,” Natl J Physiol Pharm Pharmacol, no. 0, p. 1, 2021, doi: 10.5455/njppp.2021.11.04129202127052021.

[43] “HOME [Company address],” 2020.


[44] A. Angelucci, D. Kuller, and A. Aliverti, “A home telemedicine system for continuous respiratory monitoring,” IEEE J Biomed Health Inform, vol. 25, no. 4, pp. 1247–1256, Apr. 2021, doi: 10.1109/JBHI.2020.3012621.

[45] “admin-gestora-de-la-revista-cnib-id12”.

[46] “SMART MATTRESS”.

[47] “Efectos colaterales positivos de la pandemia (I),” Revista Uruguaya de cardiología, vol. 35, no. 2, Jul. 2020, doi: 10.29277/cardio.35.2.6.

[48] “Lindsay Ariadna Concha-Mora (@lindsayconcha), Kathia Gutiérrez-Juárez (@katgtz), Sofía Aideé Rojas-Prettel (@sofprettel).”


[49] N. E. Linarez-Ochoa, K. P. Cerrato-Varela, R. M. Durón, and E. F. Herrera-Paz, “Linarez-Ochoa et al / Rev Fed Arg Cardiol,” 2020. [Online]. Available: https://orcid.org/0000-0001-9437-6620a.

[50] O. O. Alcázar-Aguilar, J. E. Castro-Yanahida, M. C. Rodríguez-Vargas, S. L. Gil-Cueva, and E. L. Cebrian-Centeno, “Recomendaciones dirigidas a los familiares responsables del cuidado domiciliario de un paciente diagnosticado con Covid-19,” Revista Peruana de Investigación en Salud, vol. 5, no. 1, pp. 40–49, Jan. 2021, doi: 10.35839/repis.5.1.790.

[49] N. E. Linarez-Ochoa, K. P. Cerrato-Varela, R. M. Durón, and E. F. Herrera-Paz, “Linarez-Ochoa et al / Rev Fed Arg Cardiol,” 2020. [Online]. Available: https://orcid.org/0000-0001-9437-6620a.

[50] O. O. Alcázar-Aguilar, J. E. Castro-Yanahida, M. C. Rodríguez-Vargas, S. L. Gil-Cueva, and E. L. Cebrian-Centeno, “Recomendaciones dirigidas a los familiares responsables del cuidado domiciliario de un paciente diagnosticado con Covid-19,” Revista Peruana de Investigación en Salud, vol. 5, no. 1, pp. 40–49, Jan. 2021, doi: 10.35839/repis.5.1.790.
Publicado
2023-07-13
Cómo citar
PETROCELLI, L. E., SÁNCHEZ, J., & GÓMEZ, R. (2023). TECNOLOGÍAS REMOTAS NO INVASIVAS UTILIZADAS DURANTE LA PANDEMIA COVID-19 COMO APOYO EN EL PROCESO DE REGISTRO DE SEÑALES CARDIORRESPIRATORIAS. Gente Clave , 7(2), 67-76. Recuperado a partir de https://revistas.ulatina.edu.pa/index.php/genteclave/article/view/308
Sección
Artículos