CHARACTERISTICS OF TATTOO ELECTRODES AND FLEXIBLE ELECTRONICS AND THEIR APPLICATIONS IN THE ADQUISITION OF BIOMEDICAL SIGNALS
Palabras clave:
electrodes, tattoo electrodes, flexible electronic, electrophysiological signals, biocompatibilityResumen
Focused on solving the problem of adherence to the skin and the quality of the bioelectrical recordings, new devices that have emerged such as tattoo electrodes and flexible electronics, which prove to be a novel and viable technology, capable of improving the quality in electrophysiological signal studies and patient comfort. The use of electrodes or medical patches to capture bioelectrical signals is of utmost importance for the diagnostic of different pathologies, as is the need for devices that are biocompatible with human skin and are effective when capturing these signals. This article presents a study of the state of the art on the main characteristics and applications of tattoo electrodes and flexible electronics in biomedical signal measurement processes and the benefits, it offers compared to used medical electrodes.
Descargas
Citas
Alberto, J., Leal, C., Fernandes, C., Lopes, P. A., Paisana, H., de Almeida, A. T., & Tavakoli, M. (2020). Fully Untethered Battery-free Biomonitoring Electronic Tattoo with Wireless Energy Harvesting. Scientific Reports, 10(1), 5539. https://doi.org/10.1038/s41598-020-62097-6
Aragon, J. E., & Calleja, W. A. (2003). Fabricación y caracterización eléctrica de microelectrodos de silicio para registro de señales nerviosas. Revista Mexicana de Ingeniería Biomédica, 24(2), 126–134.
Bandodkar, A. J., Jia, W., Yard, C., Wang, X., Ramirez, J., & Wang, J. (2015). Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study. In Analytical Chemistry (Vol. 87, Issue 1). https://doi.org/10.1021/ac504300n
Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-ramírez, G., Andrade, F. J., Schöning, M. J., & Wang, J. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronic, 54, 603–609. https://doi.org/10.1016/j.bios.2013.11.039
Bandodkar, A. J., & Windmiller, J. R. (2013). A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst, 138, 7031. https://doi.org/10.1039/c3an01672b
Bareket, L., Inzelberg, L., Rand, D., David-Pur, M., Rabinovich, D., Brandes, B., & Hanein, Y. (2016). Temporary-tattoo for long-term high fidelity biopotential recordings. Scientific Reports, 6(1), 1–8. https://doi.org/10.1038/srep25727
Bihar, E., Roberts, T., Zhang, Y., Ismailova, E., Hervé, T., Malliaras, G. G., De Graaf, J. B., Inal, S., & Saadaoui, M. (2018). Fully printed all-polymer tattoo/textile electronics for electromyography. Flexible and Printed Electronics, 3(3), 034004. https://doi.org/10.1088/2058-8585/aadb56
Cameron, N. L. (2006). Electrónica impresa flexible aplicada a la seguridad industrial (Arthur A. Tracton (ed.); CRC Press).
Chen, Y., Rommelfanger, N. J., Mahdi, A. I., Wu, X., Keene, S. T., Obaid, A., Salleo, A., Wang, H., & Hong, G. (2021). How is flexible electronics advancing neuroscience research? Biomaterials, 268, 120559. https://doi.org/10.1016/j.biomaterials.2020.120559
De Juan, J. (2012). Fundamentos de Biología Humana, Catálogo de células del organismo humano. In Histología. Universidad de Alacant.
Encinas, M., & Cruz, M. (2018). Límites de la PM convencional en la obtención de Tipo poroso para aplicaciones biomédicas. 13.
Enderle, J. D., & Bronzino, J. (2012). Introduction to Biomedical Engineering (J. D. Enderle & J. D. Bronzino (eds.); Third Edit). Academic Press.
Esteban Plaza, M. (2018). Sistema Vestible para la Medición de Alcohol en Sudor. Universidad Autónoma de Madrid.
Fernández, J. (2017). La industria 4.0: Una revisión de la literatura. In Desarrollo e innovación en ingeniería (pp. 492–500). Editorial Instituto Antioqueño de Investigación.
Ferrari, L. M., Ismailov, U., Badier, J. M., Greco, F., & Ismailova, E. (2020). Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. Npj Flexible Electronics, 4(1), 1–9. https://doi.org/10.1038/s41528-020-0067-z
Ferrari, L. M., Sudha, S., Tarantino, S., Esposti, R., Bolzoni, F., Cavallari, P., Cipriani, C., Mattoli, V., & Greco, F. (2018). Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Advanced Science, 5(3), 1700771. https://doi.org/10.1002/advs.201700771
Gao, W., Ota, H., Kiriya, D., Takei, K., & Javey, A. (2019). Flexible electronics toward wearable sensing. Accounts of Chemical Research, 52(3), 523–533. https://doi.org/10.1021/acs.accounts.8b00500
González Jiménez, A. (2018). Utilización de Nanopartículoas de Plata como Agente Bacteriano en Infecciones Óseas. Universidad Complutense de Madrid.
Ha, T., Tran, J., Liu, S., Jang, H., Jeong, H., Mitbander, R., Huh, H., Qiu, Y., Duong, J., Wang, R. L., Wang, P., Tandon, A., Sirohi, J., & Lu, N. (2019). A Chest-Laminated Ultrathin and Stretchable E-Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals. Advanced Science, 6(14), 1900290. https://doi.org/10.1002/advs.201900290
Héctor Cruz Enriquez, J. V. L. G. (2008). Reducción de Ruido en Imágenes de Fase para Aplicaciones en Resonancia Magnética. In A. L. C. Carmen Mueller-Karger, Sara Wong (Ed.), IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health. IFMBE Proceedings (Vol. 18). Springer-Verlag Berlin Heidelber. https://doi.org/10.1007/978-3-540-74471-9_45
Inzelberg, L., & Hanein, Y. (2019). Electrophysiology meets printed electronics: The beginning of a beautiful friendship. Frontiers in Neuroscience, 12, 992. https://doi.org/10.3389/fnins.2018.00992
Isaza, A. (2019). Comportamiento Mecánico de la Piel en Función del Espesor de las Capas que la Componen. UNIVERSIDAD NACIONAL DE COLOMBIA.
Khalili, M., Karamouzian, M., Nasiri, N., Javadi, S., Mirzazadeh, A., & Sharifi, H. (2020). Epidemiological Characteristics of COVID-19: A Systematic Review and Meta-Analysis. Epidemiology and Infection, 148, e130. https://doi.org/10.1017/S0950268820001430
Lang, U., & Dual, J. (2007). Mechanical Properties of the Intrinsically Conductive Polymer Poly(3,4- Ethylenedioxythiophene) Poly(Styrenesulfonate) (PEDOT/PSS). Trans Tech Publications, 345–346, 1189–1193.
Liao, Y., Zhang, R., Wang, H., Ye, S., Zhou, Y., Ma, T., Zhu, J., Pfefferle, L. D., & Qian, J. (2019). Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics. RSC Advances, 9(27). https://doi.org/10.1039/c9ra01721f
Martis, R. J., Acharya, U. R., & Adeli, H. (2014). Current methods in electrocardiogram characterization. Computers in Biology and Medicine, 48(1), 133–149. https://doi.org/10.1016/j.compbiomed.2014.02.012
Niu, Y., Liu, H., He, R., Li, Z., Ren, H., Gao, B., Guo, H., Genin, G. M., & Xu, F. (2020). The new generation of soft and wearable electronics for health monitoring in varying environment : From normal to extreme conditions. Materials Today, 41, 219–242. https://doi.org/10.1016/j.mattod.2020.10.004
Oh, J. S., Oh, J. S., & Yeom, G. Y. (2020). Invisible Silver Nanomesh Skin Electrode via Mechanical Press Welding. Nanomaterials, 10(4), 633. https://doi.org/10.3390/nano10040633
Pal, A., Nadiger, V. G., Goswami, D., & Martinez, R. V. (2020). Conformal, waterproof electronic decals for wireless monitoring of sweat and vaginal pH at the point-of-care. Biosensors and Bioelectronics, 160, 112206. https://doi.org/10.1016/j.bios.2020.112206
Phan, H. (2021). Implanted Flexible Electronics : Set Device Lifetime with Smart Nanomaterials. Micromachines, 12(2), 157. https://doi.org/https://doi.org/10.3390/mi12020157
Pineda-López, F., Martínez-Fernández, A., Rojo-álvarez, J. L., García-Alberola, A., & Blanco-Velasco, M. (2018). A flexible 12-lead/holter device with compression capabilities for low-bandwidth mobile-ECG telemedicine applications. Sensors, 18(11), 3773. https://doi.org/10.3390/s18113773
Quiroz Ceballos, D. M., & Hernández Gervacio, C. (2015). Grafeno: estado del arte. In Cimav. Centro de Investigación en Materiales Avanzados, S.C.
Rabella, C. B. (2017). Diseño, caracterización y evaluación de electrodos capacitivos para la medida de ECG y EEG. Universitat Politècnica de Catalunya.
Ramírez Quiroz, C. O. (2007). Caracterización Óptica y Eléctrica de Películas de PEDOT/PSS tratadas con Dopantes Secundarios. Instituto Potosino de Investigación Científica y Tecnológica, A.C.
Remuzzi, A., & Remuzzi, G. (2020). COVID-19 and Italy: what next? The Lancet, 395, 1225–1228. https://doi.org/10.1016/S0140-6736(20)30627-9
Rodríguez Sotelo, J. L., Cuesta, D., & Castellanos, G. (2008). Agrupamiento no supervisado de latidos ECG usando características WT, Dynamic Time Warping y k-means modificado. In A. L. C. Carmen Mueller-Karger, Sara Wong (Ed.), IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health. IFMBE Proceedings (Vol. 18, pp. 1173–1177). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74471-9_272
Rodríguez Villalón, A. (2016). Grafeno: Síntesis, Propiedades y Aplicaciones Biomédicas. Universidad Complutense de Madrid.
Roth, A. G. (2019). Elasticidad. 39–42. https://doi.org/10.5151/9788580393125-03
Salim, A., & Lim, S. (2019). Recent advances in noninvasive flexible and wearable wireless biosensors. Biosensors and Bioelectronic, 141, 111422. https://doi.org/10.1016/j.bios.2019.111422
Schnyer, D. M., Akinwande, D., & Lu, N. (2017). Graphene Electronic Tattoo Sensors. ACS NANO, 11(8), 7634–7641. https://doi.org/10.1021/acsnano.7b02182
Silva, A. F., & Tavakoli, M. (2020). Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. Sensors, 20(23), 6835. https://doi.org/10.3390/s20236835
Silveira, T. M., Pinho, P., & Carvalho, N. B. (2021). RFID Tattoo for COVID-19 Temperature Measuring. IEEE Radio and Wireless Symposium, RWS, 98–100. https://doi.org/10.1109/RWS50353.2021.9360325
Sörnmo, L., & Laguna, P. (2005). Bioelectrical Signal Processing in Cardiac and Neurological Applications. Academic Press.
Tang, L., Shang, J., & Jiang, X. (2021). Multilayered electronic transfer tattoo that can enable the crease amplification effect. Science Advances, 7(3), eabe3778. https://doi.org/10.1126/sciadv.abe3778
Wang, Y., Yin, L., Bai, Y., Liu, S., Wang, L., Zhou, Y., Hou, C., Yang, Z., Wu, H., Ma, J., Shen, Y., Deng, P., Zhang, S., Duan, T., Li, Z., Ren, J., Xiao, L., Yin, Z., Lu, N., & Huang, Y. A. (2020). Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Science Advances, 6(43), eabd0996. https://doi.org/10.1126/sciadv.abd0996
WHO. (2021). Coronavirus. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
Windmiller, J. R., Martinez, A. G., Ram, J., Chan, G., Kerman, K., & Wang, J. (2013). Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst, 138, 123. https://doi.org/10.1039/c2an36422k
Wu, H., Yang, G., Zhu, K., Liu, S., Guo, W., Jiang, Z., & Li, Z. (2021). Materials, Devices, and Systems of On-Skin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Advanced Science, 8(2), 2001938. https://doi.org/10.1002/advs.202001938
Zhang, H., He, R., Liu, H., Niu, Y., Li, Z., & Han, F. (2021). Physical A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sensors & Actuators: A. Physical, 322, 112611. https://doi.org/10.1016/j.sna.2021.112611
Zhang, L., Kumar, K. S., He, H., Cai, C. J., He, X., Gao, H., Yue, S., Li, C., Seet, R. C. S., Ren, H., & Ouyang, J. (2020). Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nature Communications, 11(1), 1–13. https://doi.org/10.1038/s41467-020-18503-8
Zucca, A., Cipriani, C., Sudha, Tarantino, S., Ricci, D., Mattoli, V., & Greco, F. (2015). Tattoo conductive polymer nanosheets for skin‐contact applications. Advanced Healthcare Materials, 4(7), 983–990. https://doi.org/10.1002/adhm.201400761
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El contenido de las publicaciones son responsabilidad absoluta de los autores y no de la Universidad ni de la revista Gente Clave, que es editada por la Universidad Latina de Panamá. La revista permite a los autores mantener el derecho de autor sobre los articulos y documentos publicados mediante el uso de la siguiente licencia.
Los artículos se publican con una licencia https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Bajo los siguientes términos:
-
Atribución — Usted debe dar crédito de manera adecuada, brindar un enlace a la licencia, e indicar si se han realizado cambios. Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
-
NoComercial — Usted no puede hacer uso del material con propósitos comerciales.
-
CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la misma licencia del original.